Efficient Imitation Learning with Local Trajectory Optimization

Jialin Song, Joe Wenjie Jiang, Amir Yazdanbakhsh, Ebrahim Songhori, Anna Goldie, Navdeep Jaitly, Azalia Mirhoseini

Imitation Learning

- Learning from expert demonstrations.
- It can be more sample efficient than RL, especially in sparse reward environments.
- The convergence speed of learning depends on how expert demonstrations are collected.

How to Collect Demonstrations?

Local Trajectory Improvement

Finding the Balance

- Both terms are monotonic increasing functions in t
- Find a value of t between 1 and T to maximize the RHS

Our Approach

Experiment Setup

- MuJoCo Control Environment.
 - Each trajectory has a max time horizon of 1000.
- π^* : use Monte-Carlo tree search with a current policy π .
 - Similar to the approach used in AlphaGo.
- Reference implementation: <u>https://github.com/google-research/tree/master/polish</u>

Experiment Results: Compare with Baselines

- An intermediate value of t = 32 outperforms both DAgger (t=1) and BC (t=1000).
- It also outperforms the PPO RL baseline.

Experiment Results: Parallelization Speedup

Our Approach

 The time to collect expert trajectories through MCTS does not increase too much when using a value of t=32.

Thanks for your time!

Please find us in the virtual poster session if you have questions.