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Imitation Learning

• Learning from expert demonstrations.

• It can be more sample efficient than RL, especially in sparse reward 
environments.

• The convergence speed of learning depends on how expert 
demonstrations are collected.



How to Collect Demonstrations? 

Interpolate between DAgger and BC
Local Trajectory Improvement



Theoretical Justification
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Finding the Balance
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• Both terms are monotonic increasing 
functions in t

• Find a value of t between 1 and T to 
maximize the RHS



Experiment Setup

• MuJoCo Control Environment.
• Each trajectory has a max time horizon of 1000.

• 𝜋𝜋∗: use Monte-Carlo tree search with a current policy 𝜋𝜋.
• Similar to the approach used in AlphaGo.

• Reference implementation: https://github.com/google-
research/google-research/tree/master/polish

https://github.com/google-research/google-research/tree/master/polish


Experiment Results: Compare with Baselines
t = 32 t = 32

• An intermediate value of t = 32 outperforms both DAgger (t=1) and BC (t=1000).

• It also outperforms the PPO RL baseline.



Experiment Results: Parallelization Speedup

• The time to collect expert trajectories through MCTS does not increase too 
much when using a value of t=32.



Thanks for your time! 

Please find us in the virtual poster session if 
you have questions.
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